HoW exciting! Hands-on workshop on excitations in solids employing the EXC!TiNG code

Venue: -

Location: -

Event Date/Time: Nov 11, 2010 End Date/Time: Nov 17, 2010
Report as Spam


Computational Materials Science from an ab-initio point of view is mostly based on density functional theory (DFT) which is also the first rung on the multi-scale modelling ladder to quantitatively describe processes and phenomena seen in real materials. It has proven to be an excellent technique for the calculation of structures and molecular dynamics, and therefore a variety of popular DFT codes have already been established for being used by a large and even swiftly growing community.

While most of the applications are still dedicated to investigate ground-state properties, there is rapidly increasing demand in understanding and predicting various kinds of excitations. The topics range from light-matter interaction, spin fluctuations and lattice vibrations to situations where several fundamental excitations take place on the same energy scale and thus interact with each other. Hence, we enjoy exploring exciting basic scientific questions which, at the same time, are important in terms of industrial applications. While light- or current-induced electronic excitations play the major role in opto-electronic devices, lattice excitations and their interaction with the electronic system give rise to phenomena like superconductivity or the thermal behavior of materials. Solar cells and light-emitting diodes are of greatest industrial relevance today as much as high-strength materials or thermal coatings. Such scenarios ask for the development of basic concepts as well as the corresponding computer codes to be capable of dealing with these situations. The CECAM workshop aims at providing training to young people in this respect, making them familiar with the EXC!TiNG code, a package which is dedicated to excited state properties.